Finite-temperature properties of PMN-PT from atomistic simulations\(^1\) ABDULLAH AL-BARAKATY, Umm Al-Qura University, SERGEY PROSANDEEV, LAURENT BELLAICHE, University of Arkansas — Relaxor-based single crystals such as \((\text{PbMg}_{1/3}\text{Nb}_{2/3}\text{O}_3)_{1-x}(\text{PbTiO}_3)_x\) (denoted as PMN-PT) have been reported to exhibit excellent electromechanical properties. The high electromechanical performance characteristics of the relaxor-PT solid solutions is found for compositions at or near the morphotropic phase boundary (MPB) separating the rhombohedral and tetragonal phases. In addition to this MPB area, PMN-PT solid solutions are very interesting and complex to mimic because one of its end-member (PMN) is considered as the prototype of relaxors while its other end-member (PT) is a prototype of classical ferroelectrics. In this work, we developed an effective Hamiltonian technique to theoretically investigate the MPB area of PMN-PT and the symmetries of its phases and to reveal the effect of atomic ordering on physical properties of PMN-PT. If time allows, we will also discuss the effect of oxygen vacancies on the finite-temperature properties of PMN-PT.

\(^1\)This work is supported by the ONR grants N00014-04-1-0413, N00014-08-1-0915 and N00014-07-1-0825 (DURIP), NSF grants DMR 0701558, DMR-0404335, DMR-0080054 (C-SPIN), and DOE grant DE-SC0002220.

Abdullah Al-Barakaty
Umm Al-Qura University