Abstract Submitted for the MAR10 Meeting of The American Physical Society

Evidence from scanning tunneling spectroscopy for magneticfield-enhanced collective modes in the high- T_C superconductor $\mathbf{YBa}_{2}\mathbf{Cu}_{3}\mathbf{O}_{7-\delta}^{1}$ A.D. BEYER², M.S. GRINOLDS³, M.L. TEAGUE, N.-C. YEH, Phys. Dept., Caltech, Pasadena, CA 91125, S. TAJIMA, Phys. Dept., Osaka Univ., Japan. — We present scanning tunneling spectroscopic evidence for field-enhanced collective modes in YBa₂Cu₃O_{7- δ}. The observed spectra inside vortices exhibit two characteristic features: a pseudogap ($V_{CO} = 31.5 + 2.0 \text{ meV}$) larger than the superconducting gap ($\Delta_{SC} = 20.0 \pm 1.0 \text{ meV}$) and a subgap ($\Delta' \approx 7-10 \text{meV}$) smaller than Δ_{SC} . Outside vortices, the spectra display a gap of Δ_{SC} . As magnetic field increases, spectral weight rapidly shifts from Δ_{SC} to V_{CO} and Δ' . The vortex state also reveals energy-independent conductance modulations with peridocities of 3.6 and 7.1 lattice constants along the Cu-O bonding direction and 9.5 lattice constants along the nodal direction. The energy-independent modulations differ fundamentally from energy-dispersive modes due to Bogoliubov quasiparticle scattering interferences and originate from field-enhanced collective modes of pair-, charge- and spin-density waves.

¹NSF Grant DMR-0907251.

²Currently at the Jet Propulsion Lab, Pasadena, CA. ³Currently at Phys. Dept., Harvard Univ., Cambridge, MA.

Andrew Beyer

Date submitted: 24 Nov 2009

Electronic form version 1.4