Scanning tunneling spectroscopy of Landau levels near a zigzag edge of graphene

GUOHONG LI, ADINA LUICAN, EVA Y. ANDREI, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855

The quantum Hall plateaus observed in the transverse conductance of a two dimensional electron system in the presence of a magnetic field are believed to be a direct consequence of edge states. However, these states have not been characterized directly. For example, an outstanding question is how the Landau levels evolve from the bulk towards a sample edge. Using a low temperature high magnetic field scanning tunneling microscope, we studied the spatial dependence of electronic states in graphene in the presence of a magnetic field. We will report on the evolution of well resolved bulk Landau levels into edge states upon approaching a zigzag edge. The results, obtained by monitoring the scanning tunneling spectroscopy peaks corresponding to the first few Landau levels, will be compared to theoretical predictions.

This work was supported by DOE under DE-FG02-99ER45742, by the Lucent-Alcatel foundation, and by NSF under NSF-DMR-0906711.

Guohong Li
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855

Date submitted: 01 Dec 2009