Ballistic spin dynamics in Rashba spin-orbit coupled systems

RYO MATSUMOTO, Department of Physics, Tokyo Institute of Technology, SHUICHI MURAKAMI, Department of Physics, Tokyo Institute of Technology, PRESTO, Japan Science and Technology Agency — We theoretically study a time evolution of a transient spin grating in a two-dimensional electron gas with a Rashba spin-orbit coupling in a ballistic regime. We calculate the out-of-plane spin Fourier components, which decays with a rapid oscillation. We investigate their lifetime and frequency and analyze their dependence on the grating vector \(q \) and the spin-orbit coupling constant \(\alpha \). The frequency is proportional to \(q \) and \(\alpha \), and we find that the lifetime of the spin polarization is proportional to the inverse square of \(\alpha \) for the small \(q \) limit. Finally we compare our calculation with the case for a diffusive regime. We show that the lifetime of the spin polarization is longer when the grating vector becomes smaller, which is in contrast with the diffusive case.