Metal-insulator transitions in hole- and electron-doped Sm$_{1-x}$A$_x$NiO$_3$ thin films
P.-H. XIANG, 1AIST 2JST,CREST, H. YAMADA, I.H. INOUE, A. SAWA, AIST, H. AKOH, 1AIST 2JST,CREST — We present a study of the transport properties of hole- and electron-doped Sm$_{1-x}$A$_x$NiO$_3$ (A = Ca$^{2+}$, Ce$^{4+}$, 0 \leq x \leq 0.1) thin films deposited on LaAlO$_3$(001) substrates by pulsed-laser deposition method. The temperature-driven metal-insulator (MI) transition of the Sm$_{1-x}$A$_x$NiO$_3$ films is progressively suppressed by either hole or electron doping. The Sm$_{1-x}$A$_x$NiO$_3$ (x = 0.1) films show metallic conductivity over measured temperature range (5-350K). The effect of hole doping on the MI transition has been investigated in detail. The MI transition temperature (T_{MI}) can be tuned around room temperature by 3% Ca doping. In addition, we observe an anomaly in the resistivity below T_{MI}, which may correspond to the Néel temperature (T_N) for SmNiO$_3$ system [1]. Based on the results of the transport properties, a possible phase diagram for the hole-doped Sm$_{1-x}$A$_x$NiO$_3$ thin films has been deduced.

P. -H. Xiang
1AIST 2JST,CREST

Date submitted: 18 Dec 2009

Electronic form version 1.4