Anisotropic electrical and magnetic properties of epitaxial Ga$_{2-x}$Fe$_x$O$_3$ thin films with different crystalline orientations by Ji Hye Lee, William Jo, Department of Physics, Ewha Womans University — Anisotropy of electrical and magnetic properties in magnetoelectric and multiferroic materials is an important issue for applications of the materials to electronic devices. Ga$_{2-x}$Fe$_x$O$_3$ (GFO) has been known as a pyroelectric ferrimagnet at room temperature when $x > 1.4$. GFO exhibits a permanent polarization along b-axis while a spontaneous net magnetization along c-axis. Exploration of its anisotropic properties requires preferentially oriented epitaxial thin films of GFO with different crystalline orientations. We have grown successfully b-axis oriented GFO thin films on indium-tin oxide(001)/yttria-stabilized zirconia(001). Two additional bottom electrodes such as SrRuO$_3$ on SrTiO$_3$(111), (110) and (100) and Pt(111)/Ti/SiO$_2$/Si substrates were used for epitaxial growth of GFO. X-ray diffraction and transmission electron microscopy have been performed. Dielectric permittivity of the GFO films was measured with external magnetic field as a function of temperature. Local polarization switching behavior was characterized by scanning probe microscopy, which can give a clue to answer a debating question that GFO thin films are pyroelectric with no bistable switching states.

Ji Hye Lee
Department of Physics, Ewha Womans University

Date submitted: 24 Nov 2009

Electronic form version 1.4