Abstract Submitted
for the MAR10 Meeting of
The American Physical Society

Fresnel aperture diffraction: a phase-sensitive probe for pairing symmetry of a superconductor

CHENG-SHI LIU, Yanshan University, WEN-CHIN WU, National Taiwan Normal University — Fresnel single aperture diffraction is proposed as a phase-sensitive probe for studying the pairing symmetry of a superconductor. It is shown that in case of gap symmetry $\Delta(-k) = \Delta(k)$ with wavevector k normal to the tunnelling junction of a superconducting film, the quasiparticle diffraction pattern developed at the image plane is zeroth-order minimum. In contrast, the corresponding diffraction pattern is zeroth-order maximum for the case of $\Delta(-k) = -\Delta(k)$. Observable consequences are discussed and proposed for studying the iron-arsenic based superconductor to which gap symmetry may be complicated as a result of multiple Fermi surface pairings.

This work was supported by National Science Council of Taiwan and National Natural Science Foundation of China.

Wen-Chin Wu
National Taiwan Normal University

Date submitted: 19 Nov 2009

Electronic form version 1.4