Adiabatic Control of Two-Photon Transitions via Optical Frequency Comb

SVETLANA MALINOVSKAYA, Stevens Institute of Technology

— We show that a phase modulated frequency comb can be used to perform two-photon transitions between molecular vibrational levels forming three-level λ-system. The phase across a single pulse in the pulse train is modulated by a sin-function with a carefully chosen amplitude and modulation frequency. Partial adiabatic population transfer to the final state is fulfilled by each pulse in the applied pulse train providing a controlled population accumulation in the final state. Detuning the pulse train parameters to less than the frequency difference between the initial and final states in the λ-system changes the time scale of molecular dynamics but leads to the same complete population transfer. The proposed scheme may be used to form ultracold molecules, e.g., KRb.

1This work is supported by the National Science Foundation under Grant No. PHY-0855391.