Abstract Submitted for the MAR10 Meeting of The American Physical Society

Dielectric anomaly and structural change related to the Jahn-Teller transition in DyVO₄ KAZUMASA KISHIMOTO, TAISHI ISHIKURA, HIROYUKI NAKAMURA, YUSUKE WAKABAYASHI, TSUYOSHI KIMURA — RVO₄ system has been studied as dielectrics for several decades. Among them, DyVO₄ having Dy³⁺ ($4f^9$) and V⁵⁺ ($3d^0$) ions shows the Jahn-Teller (JT) transition at $T_D = 14$ K due to the interaction between 4f electrons on Dy sites and the lattice. As a result, the lattice distorts from the $I4_1$ and tetragonal to the Immaorthorhombic structure and ferroquadrupolar ordering occurs below T_D . We measured the dielectric constant of a single crystal of DyVO₄ and observed a distinct dielectric anomaly around T_D . To clarify the origin of the dielectric anomaly, we performed detailed single crystal structure analyses. Our results suggest that the JT distortion shifts the position of oxygen ions relative to a V ion and then local polarization of a VO₄ tetrahedron is induced below T_D . We also report the structural domain control causing remarkable magnetocapacitance effects by applying a relatively small magnetic field ($\sim 0.1 \text{ T}$), which is attributed to the strong spin-orbit coupling of Dy 4f electrons.

> Kazumasa Kishimoto Osaka university

Date submitted: 19 Nov 2009 Electronic form version 1.4