Quadrupolar Correlations, Bond Order and Spin Freezing in S=1 Triangular Lattice Antiferromagnets

EDWIN MILES STOUDENMIRE, UC Santa Barbara, SIMON TREBST, Microsoft Research, Station Q, LEON BALIENTS, Kavli Institute of Theoretical Physics — Motivated by experiments on the $S = 1$ triangular lattice antiferromagnet NiGa$_2$S$_4$ and theoretical predictions that it has a quadrupolar/spin-nematic ground state, we discuss how quadrupolar correlations may actually be more relevant at finite temperature, giving rise to an unusual two peak structure in the specific heat. Moreover, dominant third-neighbor Heisenberg exchange in the clean system can lead to a breaking of lattice rotational symmetry at finite temperature, although the sensitivity of the phase to arbitrarily weak non-magnetic disorder could explain the lack of long range order and the slow dynamics observed in experiment. To justify these predictions, we implemented a novel semiclassical approximation that allows $T > 0$ quantum effects to be simulated efficiently using classical Monte Carlo. Current efforts include treating quantum effects exactly, reproducing an experimentally observed even-odd spin impurity effect and providing other experimental signatures of the quadrupolar correlations.

Supported by DOE Basic Energy Sciences Grant No. DE-FG02-08ER46524