Abstract Submitted for the MAR10 Meeting of The American Physical Society

Activation energies for the $\nu=5/2$ Fractional Quantum Hall Effect at 10 Tesla¹ CHI ZHANG, R.R. DU, Rice University, L.N. PFEIFFER, K.W. WEST, Bell-Labs, Alcatel-Lucent, and Princeton University — We reported on the low-temperature magnetotransport in a high-purity (mobility $\sim 1 \times 10^7 \text{cm}^2/\text{Vs}$) modulation-doped GaAs/AlGaAs quantum well with a high electron density (6×10^{11} cm⁻²). A quantized $\nu=5/2$ Hall plateau is observed at B ~ 10 T, with an activation gap $\Delta_{5/2} \sim 125 \pm 10$ mK; the plateau can persist up to $\sim 25^o$ tilt-field. We determined the activation energies Δ and quasi-gap energies Δ^{quasi} for the $\nu=5/2$, 7/3, and 8/3 fractional quantum Hall states in tilted-magnetic field (θ). The $\Delta_{5/2}$, $\Delta_{7/3}$ and the $\Delta_{5/2}^{quasi}$, $\Delta_{7/3}^{quasi}$ are found to decrease in θ . We will present the systematic data and discuss their implications on the spin-polarization of $\nu=5/2$ states observed at 10 T.

[1] R. Willett, Phys. Rev. Lett. **59**, 1776 (1987).

[2] W. Pan et al, Solid State Commun. **119**, 641 (2001).

¹The work at Rice is supported by DOE Grant No. DE-FG02-06ER46274 and NSF Grant No. DMR-0706634.

Chi Zhang Rice University

Date submitted: 24 Nov 2009

Electronic form version 1.4