Abstract Submitted for the MAR10 Meeting of The American Physical Society

Superconductivity in Fe_{1.08}Te:O_x Epitaxial Thin Films WEIDONG SI, QING JIE, LIJUN WU, JUAN ZHOU, GENDA GU, PETER JOHNSON, QIANG LI, BNL — Superconducting thin films of Fe_{1.08}Te:O_x have been epitaxially grown on SrTiO₃ substrates by pulsed-laser deposition in controlled oxygen atmosphere. Although the bulk Fe_{1.08}Te is not superconducting, thin films with oxygen are superconducting with an onset and a zero resistance transition temperature around 12 K and 8 K respectively. Oxygen was found to be crucial to the superconducting properties of these films, suggesting the oxygen can induce superconductivity possibly through substitution of Te. A metal-insulator transition is found at about 60 K, lower than that of bulk (\sim 70 K). From magnetoresistive measurements, we obtained the irreversibility line and the upper critical field.

Weidong Si BNL

Date submitted: 20 Nov 2009 Electronic form version 1.4