Abstract Submitted for the MAR10 Meeting of The American Physical Society

Atomically resolved images and spectroscopy of superconducting $Ba(Fe_{1-x}Co_x)_2As_2$ single crystals N.-C. YEH, M.L. TEAGUE, Dept. of Physics, Caltech, Pasadena, CA 91125, P. CHENG, H.H. WEN, Inst. of Physics, Chinese Academy of Sciences, CHINA — We report atomically resolved images and spectroscopy of electron-doped superconducting $Ba(Fe_{1-x}Co_x)_2As_2$ single crystals, with x = 0.12, 0.08 and 0.06 corresponding to $T_c = 20$ K, 24 K and 14 K, respectively. Scanning tunneling microscopic images of the crystals reveal somewhat disordered atomic arrangements of the Ba, As and Fe/Co layers, with averaged lattice constant ~ 0.40 nm for Ba and As layers, and ~ 0.28 nm for the Fe/Co layers. In contrast, spectroscopic studies indicate relatively homogeneous tunneling conductance at constant bias voltages, which differ from the findings on hole-doped $(Ba_{1-x}K_x)Fe_2As_2$. Two types of spectra are observed, corresponding to two energy gaps $\sim 5 \text{ meV}$ and ~ 10 meV for Ba(Fe_{0.88}Co_{0.12})₂As₂, and the spatial distribution of the larger gap exhibits quasi super-modulations. The smaller gap may be attributed to superconductivity and the larger gap may be related to remnant spin density waves. Finally, doping dependent spectral evolution of $Ba(Fe_{1-x}Co_x)_2As_2$ will be discussed. Acknowledgement: NSF Grant DMR-0907251.

> Marcus Teague Caltech

Date submitted: 25 Nov 2009

Electronic form version 1.4