Microwave assisted switching in individual and interacting magnetic nanowires1 D. GRUNDLER, Physik Department E10, TU Muenchen, 85748 Garching, Germany, D. HEITMANN, J. TOPP, Inst. f. Angew. Physik, Universitaet Hamburg, 20355 Hamburg, Germany — Recent spin dynamics experiments have shown that microwave assisted switching (MAS) occurs if a magnet is excited at large excitation amplitudes, i.e., in the non-linear regime.[1,2] MAS has reduced the coercive fields H_c. We studied the MAS process on arrays of nanopatterned permalloy wires (20 nm thick, 300 nm wide, and 180 µm long) where we varied the edge-to-edge separation d between 100 and 700 nm. MAS was found to reduce H_c resonantly at the quantized center-mode eigenfrequency of the nanowires. MAS also narrowed the distribution of H_c of the nanowires. The efficiency for the MAS process depended on, both, the applied in-plane field and separation d. To model this behavior we considered the effect of dipolar interactions. [3] MAS was most efficient for $d = 100$ nm and reduced H_c by about a factor of two. Our observations are relevant if MAS is considered for encoding information in magnetic bits of high density. [1] J. Podbielski et al., Phys. Rev. Lett. 99, 207202 (2009). [2] G. Woltersdorf et al., Phys. Rev. Lett. 99, 227207 (2009).[3] J. Topp et al., in press.

1Funded by SFB668 and the German Excellence Cluster ”Nanosystems Initiative Munich (NIM)”.

Dirk Grundler
Physik Department E10, TU Muenchen, 85748 Garching, Germany

Date submitted: 20 Nov 2009

Electronic form version 1.4