Abstract Submitted for the MAR10 Meeting of The American Physical Society

Viscosity in dilute Fermi gases: spectral functions and sum rules¹ EDWARD TAYLOR, MOHIT RANDERIA, The Ohio State University — Recently there has been considerable interest in the viscosity of strongly interacting systems, especially in regimes where the mean free path is of the order of the interparticle spacing and a quasiparticle description breaks down. We derive exact results for the spectral functions and sum rules for the shear and bulk viscosities, Re $\eta(\omega)$ and Re $\zeta(\omega)$, of strongly interacting Fermi and Bose systems. The zero-frequency limits of these functions give the viscosities measured in hydrodynamic damping experiments. For a two-component Fermi gas, we find the exact sum rules $\int_0^\infty d\omega \operatorname{Re} \eta(\omega)/\pi = \varepsilon/3 - 2\langle V \rangle/5$ and $\int_0^\infty d\omega \operatorname{Re} \zeta(\omega)/\pi = (\varepsilon + P)/3 - \rho c_s^2/2$, where ε is the internal energy density, $\langle V \rangle$ the potential energy density, P the pressure, ρ the mass density, and c_s the speed of sound. These results are valid at all temperatures and for all values of $1/(k_F a)$ through the BCS-BEC crossover. We will discuss the implications of these sum rules including universal high-frequency tails of the spectral functions.

¹Supported by NSF-DMR 0706203, NSF-DMR 0907366, and ARO W911NF-08-1-0338.

Edward Taylor The Ohio State University

Date submitted: 20 Nov 2009

Electronic form version 1.4