Abstract Submitted for the MAR10 Meeting of The American Physical Society

Ta doped TiO_2 : substitutionality and bandgap variation A. ROY BARMAN, S. DHAR, M. MOTAPOTHULA, T.K. CHAN, M. BREESE, G. OS-IPOWICZ, T. VENKATESAN, NanoCore, National University of Singapore, Singapore 117576, NANOCORE, NATIONAL UNIVERSITY OF SINGAPORE, SIN-GAPORE 117576 TEAM — We report on the growth of high quality single crystal anatase $Ta_x Ti_{1-x}O_2$ films on (001) LaAlO₃ substrate by Pulsed Laser Deposition at various substrate temperatures, O₂ partial pressures, and Ta concentrations. We use X-Ray diffraction and Rutherford backscattering-ion channeling experiments to study the epitaxial film growth and Ta substitutionality. Ta is found to be almost completely substituted in the Ti sites resulting in the expansion of the TiO_2 lattice constant with Ta concentration. A strong oxygen pressure and temperature dependence of the Ta substitution is also noticed. The bandgap of the doped TiO_2 , measured by UV-Vis spectroscopy, shows a blue shift. This appears to be more consistent with the formation of an alloy $Ta_x Ti_{1-x}O_2$ with a bandgap given by a linear combination of the bandgaps of the TiO_2 and Ta_2O_5 , in accordance with the Vegard's law rather than the band filling effects (Moss-Burstein shift). The origin of this blue shift will be presented and discussed along with the experimental results.

> A. Roy Barman NanoCore, National University of Singapore, Singapore 117576

Date submitted: 02 Dec 2009

Electronic form version 1.4