Structural instabilities in Aurivillius compound $\text{Bi}_4\text{Mn}_3\text{O}_{12}$ from First Principles

SILVIA TINTE, INTEC, Univ. Nac. del Litoral, Santa Fe, Argentina, MARCELO STACHIOTTI, IFIR, Univ. Nac. de Rosario, Rosario, Argentina, RUBEN WEHT, CNEA, Buenos Aires, Argentina — Layered perovskite oxide materials are good candidates for the potential synthesis of natural multiferroic materials. One approach is to choose a ferroelectric host and to incorporate a magnetically active species. The Aurivillius layered perovskites are chosen because most are ferroelectric. Described by the formula $[\text{Bi}_2\text{O}_2][\text{A}_{n-1}\text{B}_n\text{O}_{3n+1}]$, they are formed by stacking Bi_2O_2 slabs with n perovskitelike blocks. A ferroelectric prototype compound is $\text{Bi}_4\text{Ti}_3\text{O}_{12}$ (BIT), where bismuth also occupies the A sites. Using first-principles calculations, we investigate here the three-layer Aurivillius $\text{Bi}_4\text{Mn}_3\text{O}_{12}$ (BIM) that results of substituting all Ti^{4+} B-site cations in the BIT lattice by Mn^{4+} cations. We report the structural instabilities in the high-symmetry tetragonal structure (space group symmetry $I4/mmm$). We find an unstable E_u phonon mode, which mainly involves movements of the Bi ions in the perovskite A sites with respect to the TiO_6 octahedra. This instability, also observed in non-magnetic BIT and associated to the in-plane electronic polarization, suggests the presence of ferroelectricity in BIM. We also explore different collinear spin orderings of the magnetic Mn atoms and its effect on the structural instabilities.