Abstract Submitted for the MAR10 Meeting of The American Physical Society

Polarization-dependent coherent phonon spectroscopy of singlewalled carbon nanotubes¹ G. D. SANDERS, C. J. STANTON, University of Florida, L. G. BOOSHEHRI, C. L. PINT, E. H. HAROZ, R. H. HAUGE, J. KONO, Rice University, Y.-S. LIM, Konkuk University, J.-H. KIM, K.-J. YEE, Chungnam University — To extend our previous studies² of coherent phonon (CP) dymaincs in single-walled carbon nanotubes (SWNTs), we investigate the polarization anisotropy of the radial breathing mode (RBM) in highly-aligned SWNTs. We measure RBM CPs as a function of both the angle between the tube axis and the pump polarization (θ_1) and the angle between the pump and probe polarizations (θ_2), observing complete quenching of the RBM when $\theta_1 = 90^\circ$. We simulate CP dynamics varying both θ_1 and θ_2 and find that the CP signal decreases as θ_1 goes from 0° (parallel to the tube) to 90°. We compare theory with experiment for RBM CPs created by pumping at the E_{44} optical transition in an ensemble of SWNTs with a diameter distribution centered around 3 nm.

¹Supported by NSF (grant Nos. OISE-0530220 and DMR-0706313), ONR (grant No. ONR-00075094), and the Robert A. Welch Foundation (grant No. C-1509). ²Nano Lett. **6**, 2696 (2006); Phys. Rev. Lett. **102**, 037402 (2009); Phys. Rev. B **79**, 205434 (2009).

G. D. Sanders

Date submitted: 20 Nov 2009

Electronic form version 1.4