Abstract Submitted for the MAR10 Meeting of The American Physical Society

Energy-polarization behaviors of $AA'BB'O_6$ perovskites with double rock-salt order ANINDYA ROY, DAVID VANDERBILT, Rutgers University — Using first-principles methods, we study the energy-polarization relation of double perovskites $AA'BB'O_6$ where atoms in both A and B sites are arranged in rock-salt order. The high-symmetry structure in this case is the tetrahedral F43mspace group. If a ferroelectric instability occurs, the energy-vs.-polarization landscape $E(\mathbf{P})$ will tend to have minima for \mathbf{P} along tetrahedral directions leading to a rhombohedral space group R3m, with two different values of spontaneous polarization and associated energy along opposite body-diagonal directions; or along Cartesian directions, leading to orthorhombic space group *Imm2*. We search for polar soft modes at the Γ point of the high-symmetry $F\overline{4}3m$ structure and analyze its eigenvectors to identify ferroelectric instabilities, which we find in $CaBaTiZrO_6$, KCaZrNbO₆ and PbSnTiZrO₆. The results of the first-principle calculations are modeled with a Landau-Devonshire expansion that is truncated at either 4th or 5th order in P, and its predictions are found to agree favorably with our calculation. The 5th-order calculation improves the agreement further except in PSTZ. Recently, synthesis of SrCaTiMnO₆ in rock-salt order has been reported.¹ Unfortunately, preliminary results do not seem to indicate any polarized structure.

¹J.L Blok, G. Rijnders and D.H.A. Blank, private communication.

Anindya Roy Rutgers University

Date submitted: 03 Dec 2009

Electronic form version 1.4