Magnetic switching due to hydrogen absorption in Co/Pd multilayers1 KINESHMA MUNBODH, FELIO PEREZ, Dept. of Physics, West Virginia University, SAMUEL DUCATMAN, Dept. of Physics, Grinnell College, DAVID LEDERMAN, Dept. of Physics, West Virginia University — Co/Pd multilayers with cobalt thicknesses ranging from 2.5 Å to 12 Å and palladium thicknesses ranging from 6.5 Å to 15 Å have been fabricated by d. c. sputtering on Al\textsubscript{2}O\textsubscript{3} (110) in an argon atmosphere. The morphological and structural characterizations revealed smooth surfaces, layered structure and highly oriented growth in the [111] direction. The magnetic and electronic transport properties were measured in a hydrogen and helium atmosphere at room temperature using a vibrating sample magnetometer and a four-point technique with current-in-plane configuration, respectively. All samples exhibited significant changes on the magnetic and transport properties as a function of hydrogen absorption. These preliminary results show that these devices may be used effectively as corrosion resistant hydrogen sensors and hydrogen storage devices.

1Work supported by the US Department of Energy (Grant DE-PS02-07ER07-15) and the WVNano Initiative.