Heavy Fermions and Geometric Frustration on the Shastry-Sutherland Lattice

MOO SUNG KIM, Stony Brook University

Many of the R_2T_2X (R=rare earth, T=transition metal, X=Mg, Cd, In, Sn, and Pb) form layered compounds where the R atoms lie on triangular units in the geometrically frustrated Shastry-Sutherland lattice (SSL). Depending on the relative strengths of the first and second neighbor exchange interactions, these compounds either order antiferromagnetically or show spin liquid properties. These R_2T_2X compounds are metallic, and thus offer the promise of studying the effects of geometric frustration on quantum criticality. Yb_2Pt_2Pb and Ce_2Pt_2Pb are of special interest, as they lie very near this antiferromagnetic quantum critical point. Yb_2Pt_2Pb orders antiferromagnetically at 2 K, with unusually strong fluctuations in the paramagnetic state. The ordered state is Fermi liquid-like with a Sommerfeld coefficient $\gamma = 0.03$ J/Yb-mol K2. The phase behavior with magnetic field is very complex, terminating in a sequence of magnetization plateaux, as observed previously in insulating SSL systems. In contrast, Ce_2Pt_2Pb appears to be on the spin liquid side of the QCP, and here the ground state is heavy fermion-like, with $\gamma = 0.6$ J/Ce-mol K2. Our results suggest that heavy-fermion behavior occurs near the quantum critical point in this class of SSL compounds, as for unfrustrated heavy fermion compounds, but is strongly suppressed by magnetic ordering.

1Work at Stony Brook Physics was supported by the National Science Foundation under grant DMR-0907457.