Abstract Submitted for the MAR10 Meeting of The American Physical Society

The field-dependent flow-front speed of natural convection in magnetic fluids JUN HUANG, YI LIU, ZHENYU ZHOU, WEILI LUO, University of Central Florida — The flow front of natural convection in a magnetic fluid was studied in applied field with two configurations: one with temperature gradient, ∇T , parallel to the field gradient, ∇B , and the other with ∇T anti-parallel to ∇B . The temperature profiles inside the two quasi one-dimensional cells were used to analyze the speeds of flow fronts. We found that when ∇B is anti-parallel to ∇T , the flow speed is slower than that in zero field; while when ∇B is parallel with ∇T , the flow speed is faster than that in zero field. These results confirmed our earlier work that in the parallel configuration the field enhances, while in the anti-parallel configuration the field suppresses the convection.

> Jun Huang University of Central Florida

Date submitted: 20 Nov 2009

Electronic form version 1.4