MAR10-2009-005188

Abstract for an Invited Paper for the MAR10 Meeting of the American Physical Society

Crystal chemical aspects of superconductivity in $BaFe_2As_2$ and related compounds DIRK JOHRENDT, LMU Muenchen

BaFe₂As₂ is the parent compound of the 122-type iron arsenides.¹ Superconductivity can be induced by several kinds of doping²⁻⁴ or by pressure.⁵ It is widely accepted that superconductivity in iron arsenides is unconventional and a number of experiments agree with the s±-scenario.⁶ The latter relies on Fermi surface nesting which depends on both the electron count and the lattice. However, the coincidence of doping and pressure effects on the structure of BaFe₂As₂ supports the role of the structure.⁷ Another open issue is the co-existence of superconductivity and AF magnetic ordering. Our ⁵⁷Fe-Mössbauer experiments with underdoped Ba_{0.8}K_{0.2}Fe₂As₂ ($T_c = 24$ K) revealed full magnetic splitting, which indicates such a co-existence.⁸ Compounds like Sr₂VO₃FeAs ($T_c = 37-45$ K) are promising candidates for higher T_c , but their crystal chemistry is not yet understood. In non-superconducting Sr₂CrO₃FeAs, we have detected a non-stoichiometry of the Fe-site (Fe_{0.93(1)}Cr_{0.07(1)}) and C-type AF ordering of the Cr³⁺-layers.⁹ The Cr-doping of the FeAs layer is probably detrimental to superconductivity in Sr₂CrO₃FeAs, but a similar non-stoichiometry may play a vital role in Sr₂VO₃FeAs.

-

¹M. Rotter, M. Tegel, I. Schellenberg, et al., Phys. Rev. B **78**, 020503 (2008).

²M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. **101**, 107006 (2008).

³S. Jiang, C. Wang, Z. Ren, et al., J. Phys.: Condens. Matter **21**, 382203 (2009).

⁴A. S. Sefat, R. Jin, M. A. McGuire, et al., Phys. Rev. Lett. **101**, 117004 (2008).

⁵P. L. Alireza, Y. T. C. Ko, J. Gillett, et al., J. Phys.: Condens. Matter **21**, 012208 (2009).

⁶I. Mazin, D. J. Singh, M. D. Johannes, et al., Phys. Rev. Lett. **101**, 057003 (2008).

⁷M. Rotter, M. Pangerl, M. Tegel, et al., Angew. Chem. Int. Ed. **47**, 7949 (2008).

⁸M. Rotter, M. Tegel, I. Schellenberg, et al., New J. Phys. **11**, 025014 (2009).

⁹M. Tegel, Y. Su, F. Hummel, et al., arXiv0911.0450.