Abstract Submitted for the MAR10 Meeting of The American Physical Society

Topological Transitions in Mitochondrial Membranes controlled by Apoptotic Proteins GHEE HWEE LAI, LORI K. SANDERS, ABHIJIT MISHRA, NATHAN W. SCHMIDT, University of Illinois at Urbana-Champaign, GERARD C.L. WONG, University of California, Los Angeles, OLENA IVASHYNA, PAUL H. SCHLESINGER, Washington University School of Medicine — The Bcl-2 family comprises pro-apoptotic proteins, capable of permeabilizing the mitochondrial membrane, and anti-apoptotic members interacting in an antagonistic fashion to regulate programmed cell death (apoptosis). They offer potential therapeutic targets to re-engage cellular suicide in tumor cells but the extensive network of implicated protein-protein interactions has impeded full understanding of the decision pathway. We show, using synchrotron x-ray diffraction, that pro-apoptotic proteins interact with mitochondrial-like model membranes to generate saddle-splay (negative Gaussian) curvature topologically required for pore formation, while anti-apoptotic proteins can deactivate curvature generation by molecules drastically different from Bcl-2 family members and offer evidence for membrane-curvature mediated interactions general enough to affect very disparate systems.

> Ghee Hwee Lai University of Illinois at Urbana-Champaign

Date submitted: 09 Dec 2009

Electronic form version 1.4