Electron-lattice coupling and partial nesting as the origin of Fermi arcs in manganites

JUAN SALAFRANCA, University of Tennessee and ORNL, GONZALO ALVAREZ, ORNL, ELBIO DAGOTTO, University of Tennessee and ORNL — We present a detailed Monte Carlo study of the one-particle spectral function using a double-exchange model for layered manganites, incorporating lattice distortions. Our results contribute to clarifying the physical origin of the Fermi arcs observed in ARPES experiments on bilayered manganites. In a range of parameters where no broken symmetry phase exists, the nearly-nested Fermi surface favors particular correlations between the Jahn-Teller distortions. Due to these correlations, the spectral weight is suppressed near the Brillouin zone edge, while a quasiparticle peak survives in the zone diagonal. This regime manifests as a pseudogap in the density of states, and produces a Fermi-arc like Fermi surface. We also discuss the stability of the pseudogap varying the temperature and the electron-lattice coupling strength for different hole dopings.

1Supported by NSF, Grant No. DMR-0706020 and the Div. of Mat. Science and Engineering, U.S. DOE under contract with UT-Batelle, LLC.