Experimental and theoretical study on hydrogen interaction with unsaturated Metal Organic Frameworks1 NOUR NIJEM, JEAN FRANÇOIS VEYAN, University of Texas at Dallas, YONGGANG ZHAO, LINGZHU KONG, JING LI, DAVID C. LANGRETH, Rutgers University, YVES J. CHABAL, University of Texas at Dallas — Infrared absorption spectroscopy (IRAS) is useful to study the interaction of H_2 molecules inside various materials, since the frequency of its internal stretch mode depends on the adsorption site. Unsaturated Metal Organic Frameworks (MOFs) are particularly interesting due to their high H_2 uptakes with relatively large isosteric heats of adsorption ($Q_{st} > 8 \text{ kJ/mol}$). Our study focuses on H_2 in $\text{M}_2(\text{dhtp})$, dhtp=2,5-dihydroxyterephthalate (M= Zn, Ni, Co, Mg) and combines temperature-dependent IRAS measurements and vdW-DF calculations. Results show that the H_2 stretch frequencies are very sensitive to the chemical environment, with no correlation between binding energies and frequency shifts, as previously observed for saturated MOFs.2 Moreover, the H_2 stretch vibration closest to the metal site exhibits a strong shift from -30 cm-1 to -68 cm-1 upon population of neighboring sites (e.g. “oxygen” site).

1This work is supported fully by DOE Grant No. DE-FG02-08ER46491.

2N. Nijem \textit{et al.} submitted to J.A.C.S 2009

Nour Nijem
University of Texas at Dallas

Date submitted: 21 Dec 2009 Electronic form version 1.4