Kinematic production and study of cold atoms and molecules
KEVIN STRECKER, Sandia National Laboratories, Livermore, CA, DAVID CHANDLER, JEFFERY KAY — We have produced measurable amounts of cold molecules using a unique crossed molecular beam scattering technique, Kinematic Cooling. This technique allows for the production of cold molecules in either their absolute ro-vibrational ground state via elastic scattering with a near equal mass atom, or produced in rotationally, vibrationally or electronically exited states via inelastic collisions with an atom of a dissimilar mass. We have demonstrate this technique using inelastic collisions between NO molecules and Ar atoms, specifically NO($^2\Pi_{1/2} J=0.5$) + Ar \rightarrow NO($^2\Pi_{1/2} J'=7.5$) + Ar. We have performed new measurements on this system, utilizing vastly different experimental conditions, such that now we can report observation of samples of NO$_{7.5}$ that persist in our observation volume for over 150 microseconds. This observation time has been shown to be limited by diffusion of the unconfined molecules from our observation region. Monte-Carlo modeling of the diffusion of the molecules from the interaction volume convoluted with the detection volume yields a final average temperature for the NO$_{7.5}$ to be near 30mK. The Kinematic cooling technique has recently been extended to cooling of ND$_3$, NH$_3$ and Kr.

Kevin Strecker
Sandia National Laboratories, Livermore, CA

Date submitted: 09 Dec 2009