Abstract Submitted for the MAR10 Meeting of The American Physical Society

Repulsive interactions of deuterium and nitrogen under high pressures MINSEOB KIM, Institute for Shock Physics, Washington State University, CHOONG-SHIK YOO, Institute for Shock Physics and Dept of Chemistry, Washington State University — High-pressure studies of simple diatomic mixtures are fundamental to understanding the nature of intermolecular interactions and, thereby, their physical and chemical transformations. In this paper, we present the Raman and x-ray studies of D₂:N₂ mixtures to 70 GPa. Our results indicate that the evolution of Raman spectra of D₂ under pressure is apparently coupled to the structural phase transitions in the host N₂ lattice and their crystal structures. A large blue-shift of D₂ vibron in N₂ lattice at high pressures indicates a highly repulsive nature of intermolecular interactions between the host N₂ and guest D₂ molecules. We will discuss about the origin of such repulsive interaction in terms of the crystal structure of the mixture at high pressures.

> Minseob Kim Institute for Shock Physics, Washington State University

Date submitted: 20 Nov 2009

Electronic form version 1.4