Magnetic Properties of Porous Metal-Organic Frameworks: \(\text{Ni}_2(\text{BODC})_2(\text{TED}) \) and \(\text{Ni}_2(\text{BDC})_2(\text{TED}) \) YOUCEF HAMIDA, DUSAN DANILOVIC, CHYAN LIN, TAN YUEN, Temple University, KUNHAO LI, MOOTHTETTY PADMANABHAN, JING LI, Rutgers University, TEMPLE UNIVERSITY PHYSICS DEPARTMENT TEAM, RUTGERS UNIVERSITY DEPT. OF CHEMISTRY & CHEMICAL BIOLOGY TEAM — Results of \(\chi(T) \), \(M(H) \), and heat capacity \(C(T) \) measurements on two Ni dimer based porous materials \(\text{Ni}_2(\text{BODC})_2(\text{TED}) \) and \(\text{Ni}_2(\text{BDC})_2(\text{TED}) \) are reported. These materials form a tetragonal crystal structure of space group P4/ncc with \(a = b = 14.9 \) Å and \(c = 19.4 \) Å and Ni-Ni separation of 2.61Å within the dimer. Magnetic data of \(\text{Ni}_2(\text{BODC})_2(\text{TED}) \) revealed a ferromagnetic-like transition at about 17 K with \(\theta = 8 \) K, and a coercivity field of 1700 G was observed in the hysteresis curve. Though isostructural to \(\text{Ni}_2(\text{BODC})_2(\text{TED}) \), \(\chi(T) \) and \(M(H) \) results of \(\text{Ni}_2(\text{BDC})_2(\text{TED}) \) showed an antiferromagnetic transition at 10 K with \(\theta = -132 \) K, and no hysteresis was observed. Although specific heat data \(C(T) \) showed no clear transition in both compounds, nonlinear behavior is clearly seen in \(C/T \) vs. \(T \) plots, and a fit to the electron and phonon contributions to \(C(T) \) gives a large heavy-fermion-like \(\gamma \) in both cases. A model for the magnetic interactions is proposed and a comparison to the Cu and Co analogues is also made.

Youcef Hamida
Temple University

Date submitted: 27 Nov 2009 Electronic form version 1.4