Abstract Submitted for the MAR10 Meeting of The American Physical Society

Supersolid-like Behavior in Thin Solid ⁴He Films Adsorbed on a Nanoporous Glass¹ KEIYA SHIRAHAMA, TAKAYUKI KOGURE, RAMA HI-GASHINO, HITOMI YOSHIMURA, YOSHIYUKI SHIBAYAMA, Keio University — Two-dimensional ⁴He solid is a prospective system for observing supersolidity. We study thin solid ⁴He films adsorbed on a porous glass with 2.5 nm pore size. Torsional oscillator (TO) measurements are carried out for coverage n from 6 to 30 μ mol/m². Even in the solid films ($n < 21\mu$ mol/m²) we have observed an increase in the TO frequency associated with a dissipation peak; i.e. the supersolid - like behavior. The onset temperature of the frequency shift shows an interesting coverage dependence: It is 1 K at 6 μ mol/m² and approaches 0 K near the critical coverage $n_c = 21\mu$ mol/m², above which liquid film superfluidity is observed. The overall behaviors might be interpreted as a quantum critical phenomenon around n_c . Further studies including oscillation velocity dependence and measurements for solid ³He films are underway.

¹Work supported by Grant-in-Aid for Scientific Research (S) and in Priority Area, MEXT, Japan.

Keiya Shirahama Keio University

Date submitted: 21 Dec 2009

Electronic form version 1.4