Mechanism of giant exchange bias in a rare earth superlattice1

M.R. FITZSIMMONS, LANL, C. DUFOUR, K. DUMESNIL, Laboratoire de Physique des Matériaux, Université H. Poincaré Nancy, J. DOU, M. PECHAN, Department of Physics, Miami University of Ohio, J.A. BORCHERS, NIST, M. LAVER, PSI — After cooling a DyFe\textsubscript{2}/YFe\textsubscript{2} superlattice [3 nm DyFe\textsubscript{2}/12 nm YFe\textsubscript{2} repeated 22 times] to 12 K in a 1 T field, which aligns the Fe-spins parallel to the field, the magnetization vs. field curve of the superlattice was dramatically shifted along the magnetization and applied field axes. The exchange bias was -2 Tesla. We developed a one dimensional spin-chain-model that completely explains the polarized neutron reflectometry, magnetometry and X-ray magnetic circular dichroism data. Two in-plane domain configurations were identified in the model. Both configurations contribute to the extraordinarily large exchange bias of the DyFe\textsubscript{2}/YFe\textsubscript{2} superlattice. Until just recently, we lacked direct evidence for the existence of the domain configurations; however, SANS measurements of the thin film superlattice show compelling proof that magnetization reversal is accompanied by formation of small domains in the sample plane. The domain scattering exhibits a pronounced enhancement at the exchange bias field, and remarkably, is a minimum at the cooling field rather than at high (7 T) fields.

1Work supported by the U.S. Department of Energy.

Michael Fitzsimmons
LANL

Date submitted: 21 Dec 2009

Electronic form version 1.4