How Entangled Polymer Chains Relax

RICHARD WOOL, Department of Chemical Engineering, Univ Delaware — It will be shown through a series of experiments with selectively deuterated model polymers that stress relaxation occurs through a mechanical percolation process which permits large clusters of entangled polymers to stress relax before their conformations are fully relaxed. We find that:

(a) Reptating homopolymer chains with molecular weight $M >> M_c$ appear to be non-Reptating as their ends and centers relax at the same rate in a Rouse-like manner during percolation. (b) The mechanical relaxation time $\tau(M)$ is related to the Reptation time $T_r \sim M^3$ by $\tau(M) = T_r [(1-M_c/M) M_e/M_c]^2$, which is the origin of the viscosity behaving as $\eta \sim M^{3.4}$. (c) During stress relaxation, the random coil dimensions $R_g(//)$ and $R_g(\perp)$ are significantly not relaxed when the stress and birefringence relax to zero.

(d) Matrix molecular weight P effects on relaxation time $\tau(M)$ of the probe chain M are as follows: When the probe chain $M >> P$, the matrix P-chains percolate and Rouse-like dynamics is observed for the M-Reptating chains with $\tau(M) \sim P^1 M^2$. (e) When the matrix $P >> M$, percolation does not occur for the M-chain and the relaxation time of the probe chain $\tau(M) \sim P^0 M^3$ is in accord with DeGennes Reptation theory. These results clearly suggest that current notions of polymer rheology involving chain end fluctuation and constraint release need to be reconsidered.

Richard Wool
Department of Chemical Engineering, Univ Delaware

Date submitted: 27 Nov 2009