MAR10-2009-005544

Abstract for an Invited Paper for the MAR10 Meeting of the American Physical Society

Novel concepts in infrared imaging at nanoscale resolution THOMAS TAUBNER, RWTH Aachen

Within the recent years, various novel optical concepts have been invented to improve the diffraction-limited resolution of optical microscopy. The first approach of scanning near-field optical microscopy (SNOM) employed a small, subwavelength-sized aperture that is scanned close to the object of interest, capable of a resolution of about 50 nm. More advanced concepts rely on the light scattering of a sharp tip probing the sample, allowing for higher resolution (10-30 nm) and the use of longer wavelengths. Another exciting new imaging device, a planar slab of a material with negative permittivity called a superlens, allows for subwavelength resolved imaging over large areas. I will focus on the latter two systems that operate with *infrared light* and offer the capability of chemical sensing by directly probing molecular vibrations. Particularly, I will present the latest results on superlensing that became accessible by *phase-sensitive* infrared near-field microscopy and thus provide new insight into the imaging process of a such a device [1]. I will also explain the basics of scattering-type near-field optical microscopy allows to sense molecular vibrations as well as collective excitation of lattice vibrations ("phonons") in polar crystals [5]. Currently, the main limitation of this technique comprises of the low signals that demand tunable laser sources and restrict the spectral range of operation. Consequently, I will introduce new concepts for increasing the sensitivity of infrared near-field spectroscopy to ultimately allow for a broadband operation.

- [1] T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, Science 313, 1595 (2006).
- [2] T. Taubner, R. Hillenbrand, F. Keilmann, Applied Physics Letters 85, 5064 (2004).
- [3] A. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, R. Hillenbrand, Advanced Materials 19, 2209 (2007).
- [4] M. Brehm, T. Taubner, R. Hillenbrand, F. Keilmann, Nano Letters 6, 1307 (2006).
- [5] R. Hillenbrand, T. Taubner, F. Keilmann, *Nature* **418**, 159 (2002).