Abstract Submitted for the MAR10 Meeting of The American Physical Society

Electric Field Induced Resistive Switch in Transition Metal Oxides: A "Model" for Future Non-Volatile Memory Devices NILANJAN DAS, YUYI XUE, YA-QI WANG, C.W. (PAUL) CHU, University of Houston — The kinetics of resistive switching in metal (Ag)-Pr_{0.7}Ca _{0.3}MnO₃ interfaces has been investigated. The resistance hysteresis ΔR varies with the pulse amplitude V_0 roughly as a step function with existence of a threshold voltage V_t . On the other hand, the ΔR varies with the pulse width (T_w) as a two-stage sequence: an initial exponential rise with a time constant $\tau_S \approx 2 \ \mathrm{X10^7}$ s and a slow linearly increasing tail. The slow linear part is dominant only in the quasi-dc switch (pulse width ~ a few seconds) below V_t . The retentions of the ΔR corresponding to the two stages are also extremely different, indicating that different underlying processes are involved. The relaxation time (τ_R) is 10⁸ s (~year) or higher for the sub- μ s switching, in strong contrast with the total disappearance of the ΔR after a few days for sub-threshold $(V_0 << V_t)$ switch. More results obtained suggest that defect creation/annihilation is likely the mechanism for the sub- μ s switching and that a slow accumulative process (like diffusion) of defects may be responsible for the quasi-dc switch.

> Nilanjan Das University of Houston

Date submitted: 27 Nov 2009

Electronic form version 1.4