Integrated Multilayer Nanogenerator Fabricated Using Paired Nanotip-to-Nanowire Brushes

YAGUANG WEI, SHENG XU, RUSEN YANG, ZHONGLIN WANG, SCHOOL OF MATERIALS SCIENCE AND ENGINEERING, GEORGIA INSTITUTE OF TECHNOLOGY TEAM — We present a new approach to a nanogenerator (NG) that is composed of integrated, paired nanobrushes made of pyramid-shaped metal coated on nanotip (NTP) arrays and hexagonal-prism-shaped ZnO nanowire (NW) arrays, which were synthesized using a chemical approach at \(<100\) °C on the two surfaces of a common substrate, respectively. With one piece of such a structure stacked in close proximity over another to form a layer-by-layer matched brush architecture, direct current is generated by exciting the architecture using ultrasonic waves. A four-layer integrated NG is demonstrated to generate an output power density of \(0.11 \mu\text{W/cm}^2\) at 62 mV. The layer-by-layer assembly provides a feasible technology for building three dimensional NGs for applications where force or pressure variations are available.

Research supported by DARPA (Army/AMCOM/REDSTONEAR,W31P4Q-08-1-0009), BES DOE (DE-FG02-07ER46394), DARPA/ARO W911NF-08-1-0249, KAUST Global Research Partnership, Emory-Georgia Tech CCNE from NIH.