Abstract Submitted for the MAR10 Meeting of The American Physical Society

Orbital ordering in CaV_2O_4 : A neutron scattering study OLIVER PIEPER, Helmholtz Zentrum Berlin (HZB), B. LAKE, A. DAOUD-ALADINE, M. REEHUIS, T. PERRING, M. ENDERLE, K. RULE, K. PROKES, B. KLEMKE, K. KIEFER, A. NIAZI, J.Q. YAN, D.C. JOHNSTON, A. HONECKER — CaV₂O₄ is a quasi-one dimensional spin-1 Heisenberg antiferromagnet. The magnetism arises from the partially filled t_{2q} -levels of the V³⁺-ions, which in addition give an orbital degree of freedom to the system. In contrast to the isovalent vanadium spinel compounds, the low dimensionality in CaV_2O_4 already arises from the crystal structure. It contains weakly coupled double-chains of edge-sharing VO_6 octahedra, where the particular octahedral staggering creates a zigzag-like arrangement of the vanadium ions. This in return gives rise to strong magnetic direct exchange interactions between nearest and next nearest neighbor vanadium ions and to geometrical frustration. However, the strength of the exchange interactions is strongly influenced by the particular occupation of the t_{2q} -orbitals. Depending on the type and degree of octahedral distortion, the system can be interpreted as a frustrated Haldane chain or a spin-1 ladder. Here we use single crystal neutron diffraction and neutron spectroscopy to determine the spin structure as well as the complex excitation spectrum of CaV_2O_4 . The results are analyzed theoretically and from this the leading exchange paths are deduced and discussed in terms of orbital ordering.

> Oliver Pieper Helmholtz Zentrum Berlin (HZB)

Date submitted: 20 Nov 2009

Electronic form version 1.4