Abstract Submitted for the MAR10 Meeting of The American Physical Society

Quantum Transport in Oxide Nanostructures¹ JEREMY LEVY, CHENG CEN, DANIELA F. BOGORIN, University of Pittsburgh — We describe low-temperature magnetotransport experiments in nanostructures formed at the LaAlO₃/SrTiO₃ interface using a conducting AFM writing technique.^{2,3} Measurements on a 6-nm wide Hall cross containing $N \approx 250$ electrons (density $n = 1.6x10^{12}cm^{-2}$) show evidence for quantized conductance, with notable departures from traditional quantized Hall behavior. A pronounced weak antilocalization feature near B = 0 is exhibited in both the Hall and magnetoresistance channels, indicating the presence of significant spin-orbit (Rashba) coupling. A 14-nm wide nanowire with lower carrier density (density $n = 8.5x10^{11}cm^{-2}$) exhibits magnetoresistance plateaus associated with integer Landau level filling factors $\nu=2,3,...,9$, and the fractional filling factors $\nu=7/3$ and 11/5. The ability to fashion conducting structures with extreme nanoscale dimensions and distinct signatures of quantum transport opens new opportunities for the development of novel quantum devices.

¹Support from NSF(DMR 0704022) and ARO MURI (W911NF-08-1-0317) and NHMFL is gratefully acknowledged.

²C. Cen, S. Thiel, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nature Materials 7, 2136 (2008).

³C. Cen, S. Thiel, J. Mannhart, and J. Levy, Science **323**, 1026 (2009).

Jeremy Levy University of Pittsburgh

Date submitted: 11 Dec 2009

Electronic form version 1.4