Abstract Submitted for the MAR10 Meeting of The American Physical Society

Voltage Triggered Hysteretic Switching of VO_2 at Room Temperature¹ JEEHOON KIM, CHANGHYUN KO, ALEX FRENZEL, SHRIRAM RAMANATHAN, JENNIFER E. HOFFMAN, Harvard University — Vanadium oxide (VO_2) is known to undergo an insulator-to-metal transition near 340K; because of this proximity to room temperature, VO_2 is a promising candidate material for technological applications such as sensors and memory devices. We use conducting atomic force microscopy to investigate the voltage triggered insulator-to-metal transition in VO_2 at the nanoscale. We observe hysteretic resistance switching as a function of locally applied electric field, at room temperature. We correlate the hysteresis loop shape with surface morphology.

¹This work is supported by the Harvard NSEC under NSF Grant No. PHY-0117795, and by AFOSR Grant No. FA9550-08-1-0203.

Jeehoon Kim Harvard University

Date submitted: 20 Nov 2009 Electronic form version 1.4