Magnetic domain dynamics in Fe/Gd magnetic multilayers

JYOTI MOHANTY, SEBASTIAN DIETZE, ASHISH TRIPATHI, ERIK SHIPTON, KEITH CHAN, UC San Diego, SANGSOO KIM, IAN MCNULTY, Argonne National Laboratory, ERIC FULLERTON, OLEG SHPYRKO, UC San Diego — We study the evolution of magnetic domains and effect of pinning centers in thin film magnetic systems as a function of magnetic field and dopants to identify the role the disorder in formation and stability of the domains in these systems. We have studied Fe/Gd multilayer exhibiting ordered stripes due to perpendicular magnetic anisotropy (PMA). Polar Kerr effect and Vibrating sample magnetometry measurements are used to characterize the sample. Magnetic Force Microscopy (MFM) measurements show out-of-plane magnetized stripe domains. We study the effects of field pinning of the local magnetic structure of these systems through their magnetization hysteresis loops both along easy and hard axis of magnetization. Using element sensitivity and depth resolution of resonant magnetic x-ray coherent scattering technique we investigate the magnetic domain structure and intermittent switching dynamics. Comparison of the magnetic speckles (in momentum space) provides information on correlation between the magnetic structures (in real space). We will present the X-ray Coherent Speckle Metrology approach to study Barkhausen noise spectrum as a function of the applied magnetic field, and will discuss extension of this study to Tb-doped Fe/Gd magnetic films.

Jyoti Mohanty
UC San Diego