Fabrication of Phase-Pure Sr2CrOsO6 Epitaxial Films

J.M. LUCY, A.J. HAUSER, Department of Physics, The Ohio State University, H.A. SEIBEL, P.M. WOODWARD, Department of Chemistry, The Ohio State University, F.Y. YANG, Department of Physics, The Ohio State University — The newly discovered magnetic double perovskite Sr2CrOsO6 exhibits a combination of unique properties, including high Tc of 725 K, semiconducting band structure and nearly 100% spin-polarized valence and conduction bands indicated by a number of theoretical calculations. We have grown epitaxial Sr2CrOsO6 thin films by off-axis ultrahigh vacuum sputtering using a stoichiometric Sr2CrOsO6 target made by multi-step solid state synthesis. Rietveld refinements of the x-ray diffraction (XRD) scans of the Sr2CrOsO6 target show mostly double perovskite Sr2CrOsO6 phase (a = 3.904 Å) with less than 1% secondary phases. Due to the perfect lattice match between Sr2CrOsO6 and SrTiO3, we chose LSAT substrates (a = 3.868 Å) to grow Sr2CrOsO6 films. XRD results demonstrated phase-pure, fully epitaxial Sr2CrOsO6 (100) films on LSAT with a rocking curve FWHM of 0.32°. Magnetic measurements for bulk Sr2CrOsO6 show an extremely large magnetic anisotropy with a coercivity of 2T at 385 K.

1Funding for this research was provided by the Center for Emergent Materials at the Ohio State University, an NSF MRSEC (Award Number DMR-0820414).