MAR10-2009-006104

Abstract for an Invited Paper for the MAR10 Meeting of the American Physical Society

Ab-initio study of the resistivity, Gilbert damping and spin-flip diffusion in transition metal alloys PAUL KELLY, University of Twente

Using a formulation of first-principles scattering theory that includes disorder and spin-orbit coupling on an equal footing, we calculate the resistivity ρ , spin-flip diffusion length λ_{sf} and the Gilbert damping parameter α for Fe_xNi_{1-x} substitutional alloys as a function of x over the entire concentration range. For the technologically very important Fe₂₀Ni₈₀ alloy, permalloy, we calculate values of $\rho = 3.7 \pm 0.5$ Ohm-cm, $\lambda_{sf} = 5.2 \pm 0.2$ nm and $\alpha = 0.0046 \pm 0.002$ compared to experimental low-temperature values in the range 4.4-5.1 Ohm-cm for ρ , 5.0-6.0 nm for λ_{sf} and 0.005-0.009 for α indicating that our scattering theoretical formulation captures the most important contributions to these parameters. Work carried out with A.A. Starikov in collaboration with A. Brataas, Y. Tserkovnyak and G.E.W. Bauer.