Domain walls in magnetic and multiferroic undoped manganites

JUAN SALAFRANCA, University of Tennessee and ORNL, RONG YU, Rice University, ELBIO DAGOTTO, University of Tennessee and ORNL — We study the structure and properties of Domain Walls in antiferromagnetic and in multiferroic undoped manganites. We use a model Hamiltonian [1] including double exchange, nearest and next nearest neighbors superexchange, and Jahn Teller distortions; the effect of the Dzyaloshinskii-Moriya interaction is also considered. As magnetism, electronic density, and lattice are strongly coupled in these systems, a gradient in one of these properties has remarkable effects in the others. We find interesting effects such as finite conductance at a magnetic domain wall within an insulating material, or electric dipoles associated with an antiferromagnetic domain wall, for different values of the parameters. The possibility of observing these effects in real undoped manganites is discussed. [1] S. Dong et al, Phys. Rev. B 78, 155121 (2008)

1Supported by NSF, Grant No. DMR-0706020 and the Div. of Mat. Science and Engineering, U.S. DOE under contract with UT-Batelle, LLC

Juan Salafranca
University of Tennessee and ORNL