Abstract Submitted for the MAR10 Meeting of The American Physical Society

Magnetic Properties of Three Metal-organic Coordination Networks $M(N_3)_2(4,4'\text{-bpy})$, M=Ni, Co, and Cu DUSAN DANILOVIC, YOUCEF HAMIDA, TAN YUEN, Temple University, KUNHAO LI, JING LI, Rutgers University — All three newly synthesized metal-organic coordination networks $M(N_3)_2(4,4'\text{-bpy})$ (M=Ni, Co, and Cu) crystallize in orthorhombic crystal system of the space group Cmmm (No. 65). The M ions sites have octahedral geometries with slight distortions. Results of M(H) and $\chi(T)$ for $Ni(N_3)_2(4,4'\text{-bpy})$ and $Co(N_3)_2(4,4'\text{-bpy})$ showed antiferromagnetic behavior, characterized by a cusp at $T_N=3.5$ K for Ni and $T_N=4.0$ K for Co in the $\chi(T)$ data curves. Curie-Weiss fittings yielded $\mu_{eff}=2.73$ μ_B for Ni and $\mu_{eff}=5.55$ μ_B for Co. Hysteresis was detected in the M(H) data of Ni and Co. Results of M(H) and $\chi(T)$ for Cu did not show any ordering or hysteresis. No sizable anomaly was observed in C(T) data for all compounds. Fisher classical spin linear chain model fit to the $\chi(T)$ data yielded $\frac{|J|}{k_B}=2.49$ for Ni, and $\frac{|J|}{k_B}=5.23$ for Co. Both Quantum Statistical with spin 1/2 and High Spin Fisher Semiclassical Fit applied to spin 1/2 were performed to fit the $\chi(T)$ data of Cu, and the latter had a better statistical results.

Tan Yuen Temple University

Date submitted: 27 Nov 2009 Electronic form version 1.4