Direct verification of Ga-Ga bond avoidance in the clathrate \(\text{Ba}_8\text{Ga}_{16}\text{Sn}_{30} \) from EXAFS studies

MICHAEL KOZINA, F. BRIDGES, Y. JIANG, UC Santa Cruz, M. AVILA, Universidade Federal do ABC, K. SUEKUNI, T. TAKABATAKE, Hiroshima University — \(\text{Ba}_8\text{Ga}_{16}\text{Ge}_{30} \) and \(\text{Ba}_8\text{Ga}_{16}\text{Sn}_{30} \) are important thermoelectric clathrate materials with low thermal conductivities. In these materials, the Ga/Ge or Ga/Sn atoms occupy three sites in the cage-like lattice, but the Ga are not randomly distributed. Experiments in the past have only been able to suggest that Ga-Ga bonds are not favored within the cage structure of many type I clathrates. Here we show definitive evidence that this is indeed the case for \(\text{Ba}_8\text{Ga}_{16}\text{Sn}_{30} \). Using the EXAFS technique, we are able compare the backscattering functions for the first neighbors about Ga to the calculated functions for Ga-Ga and Ga-Sn bonds. The result is that only \(\sim 15\% \) of the Ga nearest neighbors are Ga. Combining this result with diffraction data on occupational parameters, we propose one possible arrangement of Ga and Sn in the unit cell of \(\text{Ba}_8\text{Ga}_{16}\text{Sn}_{30} \). Additionally, we find significant disorder in the Ga/Sn lattice; the Ga-Sn bond and Ga-Ga bonds are 0.07Å and 0.2Å (respectively) shorter than the average bond length, which must contribute to the smaller thermal conductivity.

Michael Kozina
UC Santa Cruz

Date submitted: 27 Nov 2009