Abstract Submitted for the MAR10 Meeting of The American Physical Society

Holes and vacancies across interfaces in superconducting Sr_2CuO_4 -La₂CuO₄¹ S. SMADICI, J. LEE, P. ABBAMONTE, University of Illinois at Urbana-Champaign, IL 61801, G. LOGVENOV, I. BOZOVIC, Brookhaven National Laboratory, Upton, NY 11973 — Sr_2CuO_4 films with superconducting critical temperatures T_c up to 90 K have a substantial number of apical oxygen vacancies. An increase in T_c has been correlated in La₂CuO₄-La₂- $_xSr_x$ CuO₄ bilayers with an increase in the apical oxygen – Cu atom distance. This suggests that the apical oxygen in these structures is not an entirely passive participant in high- T_c superconductivity. We studied Sr_2CuO_4 -La₂CuO₄ superlattices with resonant soft x-ray scattering in order to quantify the apical oxygen scattering. At the O K edge we observed scattering resonances from mobile holes and apical oxygen vacancies. The apical vacancy resonant scattering factor was obtained. The distribution of apical vacancies measured at O K edge follows closely the structural imperfections measured with hard x-rays with a characteristic length 5.25 ± 0.75 A. The mobile holes diffuse with a characteristic length of λ =5.3 \pm 1 A.

¹This work was supported by grants DE-FG02-06ER46285, DE-AC02-98CH10886, MA-509-MACA, DE-FG02-07ER46453 and DE-FG02-07ER46471.

Serban Smadici University of Illinois at Urbana-Champaign

Date submitted: 20 Nov 2009 Electronic form version 1.4