Non-sinusoidal current-phase relations in SFS pi-Josephson junctions

DALE J VAN HARLINGEN, University of Illinois at Urbana-Champaign

We report the direct observation of a $\sin(2\phi)$ component in the current-phase relation (CPR) of Superconductor-Ferromagnet-Superconductor (SFS) Josephson junctions. The deviation from a sinusoidal CPR is most evident near the crossover between the 0-junction to π-junction states reached by tuning the thickness of the ferromagnet barrier and the temperature. We measure the CPR in Nb-CuNi-Nb junctions using a phase-sensitive Josephson interferometer technique in which the junctions are incorporated into a superconducting loop coupled to a dc SQUID. We correlate the CPR data with measurements of subharmonic Shapiro steps and anomalous critical current diffraction patterns that have previously been cited as evidence for higher-order Josephson tunneling components. We will discuss possible origins and implications for the non-sinusoidal component. In collaboration with M.J.A. Stoutimore (University of Illinois at Urbana-Champaign) and A.Yu. Rusanov, V.A. Oboznov, V.V. Bolginov, A.N. Rossolenko, and V.V. Ryazanov (Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Russia).

1Work supported by the National Science Foundation grant NSF DMR 07-05214.