Metallic Line Defects in three-dimensional topological band insulators YI ZHANG, YING RAN, ASHVIN VISHWANATH, University of California Berkeley — Dislocations in topological insulators can host a one-dimensional metallic state that is topologically protected. We discuss experimental consequences for Bi$_{0.9}$Sb$_{0.1}$ alloys, including an unusual strain-induced conductivity effect. With a view to studying interaction effects, microscopic parameters for the one-dimensional metallic modes are derived, starting from a Liu-Allen tight-binding model. The Luttinger parameter for the one-dimensional metal in Bi$_{0.9}$Sb$_{0.1}$ is estimated. A different route to a metallic defect line is found in model systems where SU(2) spin rotation symmetry is spontaneously broken, leading to a topological insulator. Line defects of the order parameter are found to be metallic, if a strong topological insulator is realized. We study models exhibiting this phase on the diamond and ideal wurtzite lattices. Prospects for experimental realizations are discussed.

Yi Zhang
University of California Berkeley

Date submitted: 14 Dec 2009

Electronic form version 1.4