Tetracosane (C\textsubscript{24}H\textsubscript{50}) trilayers physisorbed onto the basal plane of graphite: perpendicular patches1 MICHAEL ROTH, University of Northern Iowa, L. FIRLEJ, LCVN, Université Montpellier 2, B. KUCHTA, Laboratoire Chimie Provence, Université de Provence, CARLOS WEXLER, University of Missouri Department of Physics and Astronomy — Results of explicit - hydrogen Molecular Dynamics computer simulations of tetracosane (C\textsubscript{24}H\textsubscript{50}, or C\textsubscript{24}) trilayers deposited on a graphite substrate in the temperature range $100 \, \text{K} \leq T \leq 550 \, \text{K}$ are presented. The third layer is perpendicular to the alkane underlayers as well as to the graphite substrate. Diffusion takes place predominantly at the bottom of the patch through a ratcheting mechanism that is coupled to dihedral (torsional) defects. In the low - temperature solid the patch exhibits a dome - like shape and, with increasing temperature rolling of the interior molecules couple to the collapse of the patch into a droplet - like shape and, ultimately a liquid C\textsubscript{24} patch atop the graphite layer results. Structural, thermodynamic and bond - orientational distributions and parameters are utilized in understanding the temperature evolution of the system and results are compared to those under the United Atom approximation.

1Donors of The American Chemical Society Petroleum Research Fund (PRF43277-B5), University of Missouri Research Board, Department of Energy award number DE-FG02-07ER46411.