Plasmonic focusing on a tip for spectroscopic nano-imaging
SAMUEL BERWEGER, CATALIN C. NEACSU, ROBERT L. OLMON, University of Washington, Departments of Chemistry and Physics, LAXMIKANT V. SARAF, Pacific Northwest National Laboratory, CLAUS ROPERS, Courant Research Center, University of Göttingen, Germany, MARKUS B. RASCHKE, University of Washington, Departments of Chemistry and Physics — The focusing of light into sub-diffraction limit dimensions has been a long-standing challenge in imaging and spectroscopy. Here, we study the adiabatic concentration of propagating surface plasmon polaritons on a tapered metal tip into a localized and enhanced nanoscale excitation at the apex. Using far-field spectroscopic characterization and near-field imaging we demonstrate spatial confinement of the radially symmetric TM mode (m = 0) to within just several 10s of nm as determined by the apex radius. Ultrahigh spatial resolution near-field Raman and luminescence imaging is demonstrated with enhanced sensitivity and minimal far-field background.

Robert L. Olmon
University of Washington, Departments of Chemistry and Physics

Date submitted: 22 Dec 2009
Electronic form version 1.4