Hexagonal Warping Effects on the Surface of Topological Insulators1 LIANG FU, Harvard University — A single two-dimensional Dirac fermion state has been recently observed on the surface of topological insulator Bi\textsubscript{2}Te\textsubscript{3} by angle-resolved photoemission spectroscopy (ARPES). We study the surface band structure using $k \cdot p$ theory and find an unconventional hexagonal warping term, which is a counterpart of cubic Dresselhaus spin-orbit coupling in rhombohedral lattices. We find hexagonal warping naturally explains the observed snowflake shape of the Fermi surface, and extract its magnitude. We predict a number of testable signatures of hexagonal warping in ARPES and STM experiments on Bi\textsubscript{2}Te\textsubscript{3}. We also explore the possibility of a spin-density wave due to strong nesting of the Fermi surface. Ref: L. Fu, arXiv:0908.1418, PRL in press

1Supported by the Harvard Society of Fellows and NSF grant DMR-0605066.